Breeding crops for improved mineral nutrition under climate change conditions.
نویسنده
چکیده
Improvements in understanding how climate change may influence chemical and physical processes in soils, how this may affect nutrient availability, and how plants may respond to changed availability of nutrients will influence crop breeding programmes. The effects of increased atmospheric CO2 and warmer temperatures, both individually and combined, on soil microbial activity, including mycorrhizas and N-fixing organisms, are evaluated, together with their implications for nutrient availability. Potential changes to plant growth, and the combined effects of soil and plant changes on nutrient uptake, are discussed. The organization of research on the efficient use of macro- and micronutrients by crops under climate change conditions is outlined, including analysis of QTLs for nutrient efficiency. Suggestions for how the information gained can be used in plant breeding programmes are given.
منابع مشابه
Corrigendum: Soil warming enhances the hidden shift of elemental stoichiometry by elevated CO2 in wheat
Increase in atmospheric CO2 concentration ([CO2]) and associated soil warming along with global climate change are expected to have large impacts on grain mineral nutrition in wheat. The effects of CO2 elevation (700 μmol l(-1)) and soil warming (+2.4 °C) on K, Ca and Mg concentrations in the xylem sap and their partitioning in different organs of wheat plant during grain filling were investiga...
متن کاملFood Security and Land Use Change under Conditions of Climatic Variability
Food security covers aspects at all spatial levels from local to global and from an interdisciplinary and systemic food systems perspective. This book aims to better understand environmental, nutritional, agricultural, demographic, socioeconomic, political, technological, and institutional drivers, costs, and outcomes of current and future food security. Interactions with contextual factors inc...
متن کاملBiological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective
Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under alte...
متن کاملThe Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa
Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS). The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA), and population pressure require innovative strategies to address food insecurity and u...
متن کاملCharacterizing drought stress and trait influence on maize yield under current and future conditions.
Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 66 19 شماره
صفحات -
تاریخ انتشار 2015